
17653 Managing Software Development

BEYOND AGILE: HOW SOFTWARE
DEVELOPMENT CAN EVOLVE TO BE ANTI-

FRAGILE

SAMUEL WASSWA

10/12/17

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

2

Table of Contents
Introduction ... 3

Software Development at DynamicTech ... 3

The Problem ... 4
Scrum and the failure of agility ... 5

Anti-Fragile: Beyond Agile .. 6
Anti-Fragile Software Development .. 6

Growing Skills ... 6
Developing awareness .. 7
Disposable Software ... 7
Why teams get it wrong .. 7

Practices ... 8

Stop Practicing and Start Growing .. 9
Grows Method .. 9

Skill model .. 9
Mapping Practices to skills .. 11
Directed Empiricism ... 11

Conclusi0n ... 12
References ... 13
	

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

3

Introduction
	
In this paper, we study and analyze the software development process of DynamicTech.
We then assess the weaknesses of their processes and propose improvements that can
adopted by DynamicTech and any other organization which develops software.

DynamicTech is a Software Company which spun-off Dynamic Trust, a company which
specializes in providing agricultural services for commercial farmers. During its early
years, Dynamic Trust began growing a big clientele of farmers. The company had to
track the crop production process of the farmers right from planting to harvesting and
finally to selling. To carefully monitor these activities, they deployed field agents who
would manually collect information using paper- based forms. As the volume of
information grew, it became increasingly error-prone and arduous to organize all this
information. The company instructed the IT team to develop a web-based system to
manage the whole process with specialized software developed for mobile phones such
that field agents can easily collect data. What started as an in-house team with only two
developers, slowly grew into a full-fledged team of eight developers.

The software which was called the Comprehensive Farmer Tracking and Consolidation
System (CFTS) became a wild success. Soon, other Farmer Organizations took notice
and became interested in adopting the system for their own operations. Dynamic Trust
soon realized that their product could stand on its own. The management decided to
spinoff the product into a software company which they called DynamicTech.
DynamicTech had full autonomy from its parent company. Dynamic Trust only retained
majority shareholding in the new company.

Software Development at DynamicTech
	
At the time of its formation DynamicTech had eight full-time developers. Within a year
they had increased to twenty developers. The Chief Technology Officer(CTO) of
DynamicTech was very forward thinking and quickly adopted Agile Software
Development techniques[1]. Specifically adopting Scrum[2].

DynamicTech generally uses a combination of Scrum and Kanban which is known as
ScrumBan[3]. Scrum is an iterative development method that ensures a “piece of
working software is delivered at the end of each development operation called a sprint”.
Roles, meetings and “process artifacts” are clearly defined. Kanban on the other hand is
based on “Just-In-Time and Lean Production”. Kanban is very flexible compared to
Scrum and doesn’t define roles, meetings or “process artifacts”. It instead focuses on
“visualization of workflow, limitation of work in progress and measurement of lead
time”[4].

When the team is about to begin a new sprint, they spend a whole day planning. The
sprints last for two weeks. The CTO maintains a product backlog where he continually

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

4

adds features that may be requested by clients, features he thinks will add value to the
system and bug fixes.
At the beginning of each Sprint. He will move items from the product backlog to the
sprint backlog. It’s from this backlog that the team begin estimating work for the sprint.

Because the team is fairly big it will be divided into five groups who will each carry out
an estimation exercise using planning poker[5]. Planning poker involves the team
making estimates by “placing numbered cards face down” and revealing each one’s
estimates and then discussing about the best estimate[5].

Tasks are then updated with the agreed upon estimates. Units called “story points” are
used to estimate the size of a task and develop an idea of how long it could take. This is
important because it helps keep track of the team’s “velocity” which is how much they
can deliver in a sprint versus the team’s “capacity” which is how much time they have in
the sprint[2]. After these planning meetings work begins. All the tasks are organized on
a Kanban board. The team utilizes a Software project management tool called JIRA [6] .
The tool links the tasks to the source code version control system. The main feature of
the Kanban board is Work-In-Progress limit where “explicit limits” are set on “items that
maybe in progress at each workflow state”[4]. This is to ensure that team members
commit to finishing tasks they take on before taking up new tasks. Developers must log
the number of hours they spend on a task in whatever “workflow state” it is. Daily
“standup” meetings are held every morning for strictly five minutes where each team
member talks about what they did the previous day, any impediments they are facing
and what they plan to do on that day.

At the end of the sprint a sprint review is done. All developers are required to stop their
tasks and any unfinished work is pushed to the next sprint. During the review, the
developers present their work to the CTO and any stakeholders that may be present. The
CTO then displays the team’s velocity for that sprint and a burndown chart which shows
the “cumulative time it takes to complete outstanding tasks for deliverable software”[7].

The CTO will then comment on how the team performed in the sprint and point out if
the sprint velocity went up or down. A sprint retrospective will then be carried out
where developers discuss the individual problems they faced and how they can improve
in the next sprint. The CTO is not present in these meetings such that the developers
communicate freely. These meetings are conducted by a chosen scrum master for the
team. The scrum master is responsible for taking feedback to the CTO.

The Problem

For a number of months, the CTO began to notice worrying trends. The velocity of the
team was inconsistent and it was becoming difficult to assess the amount of work the
team could deliver. Some developers were also significantly underperforming compared
to their counterparts. The sprint reviews became showcases for developers to brag that

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

5

they had done more significant work than their colleagues. He kept getting reports that
some of the developers were losing motivation. As a result, some of the features began
traverse several sprints because they were always unfinished. Planning became an ego
clash as several developers disagreed on the estimates. The CTO was also finding it
difficult to cope with feature requests that came midway through the sprint. And the
product backlog began to grow with each sprint. It began to feel like they were spending
a lot of time following a methodological approach with little progress.

Scrum and the failure of agility
	
The “basis of an agile approach is to embrace change”. “To be aware of changes to the
product under development, the market and the environment” to name just a few[8].
Agile methods encourage adapting to change but we can see that DynamicTech is
struggling with process. What is adapting in this case? Can the CTO begin changing this
process which has worked well and is now part and parcel of the company’s culture?

So is Scrum really agile when it is very prescriptive of process and provides little room
for change. It seems Scrum is in direct contravention of the core tenets of the agile
which state “Individuals and interactions over processes and tools” and “responding to
change over following a plan”[1]. Scrum has created a rigorous strict framework.
Utilizing practices like Kanban doesn’t make it more agile. As long as the core process is
maintained. It becomes difficult to change. With good reason, it will be hard for the
CTO to change a process he has invested time and effort in. “Agile methods ask
practitioners to think when it is far easier to follow the rules and claim you are doing it
by the book”[8]. We tend to be comfortable with rules despite their restrictive nature.

Scrum has led to misconceived belief that agile is about product backlogs, standup
meetings, burndown charts or team velocity[2]. All these principles while exciting at
first quickly develop into dreary routines. This is also not helped by the fact that
iterations are described as “sprints” which suggest that you run as fast you can, rinse and
repeat.

Software development is really more of an obstacle course because it is impossible to
foresee anything that can happen during this process. The process lends its self to
adapting and reacting rather than following methodological process.

So the team has found itself stuck in rut. Following rules and prescriptions month after
month “without gaining the experience they need to get to the point where they
understand they need to move beyond the rules”[8]. It is easy to tell the CTO, that he
should evolve his practice or he should fire the incompetent developers. But how does
he make these decisions without understanding the underlying cause. Perhaps it’s a
case of lack of motivation. One of the agile principles states “build projects around
motivated individuals”[1]. How does the CTO go about embracing change without
significantly affecting the project? We aim to identify ideas that DynamicTech and any
company which feels its stuck in a rut or it has failed to outgrow rigorous process that so

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

6

called “agile methods” introduce unwittingly, can leverage to be able to respond to
change tactfully.

Anti-Fragile: Beyond Agile

Anti-fragility, a concept developed by Nassim Nicholas Taleb means that a system
increases in “capability or resilience as a result of stressors, faults, attacks or failures”[9].

Agile methods like scrum have failed to deliver agility as seen with DynamicTech. How
do we overcome the failures of agile. We must evolve beyond the overloaded term “agile”
and begin describing our ideas as anti-fragile. Anti-fragility is a better metaphor
because “software is not designed and built”. This is “too deterministic and linear”[8].
Software evolves and so does its development process. To attempt to introduce a
deterministic prescription for this process is a recipe for disaster. Agile in its purest
form embraces this constant evolution by “harnessing change” and “welcoming changing
requirements”[1]. Unfortunately, Agile methods have failed to capture this essence.
Hence the need to embrace antifragility when developing software.

When our teams are in a rut the process can evolve to compensate for these new changes
in the environment. When new requirements emerge, we must be able to accommodate
them seamlessly. We are resilient to any stressors in the environment, the product, the
market and the competition. We build fully self-organizing teams that adapt and
develop with the changing requirements while staying motivated.

Anti-Fragile Software Development
	
How then does one ensure their software development process is anti-fragile? We
believe an anti-fragile process should focus on

• Growing Skills
• Developing awareness
• Disposable software[10]

Growing Skills
	
At DynamicTech, one of the problems they had was some developers were significantly
underperforming. One option they can look at is identifying skills gaps and making sure
they address them through training or pair programming with their more skilled
counterparts. Unfortunately, Scrum doesn’t address the problem of skills gaps within
the team and instead assumes that one size fits all. A good way to be prepared is to make
sure the team keeps learning and keeps growing their skills.

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

7

Developing awareness
	
Boiling Frog Syndrome
	
It is said that when you take a frog and drop it into boiling water it will immediately
jump out. However, if you place the frog in a pan of cold water and gradually heat it, the
frog will stay put and won’t notice the dangerous temperature change until it is too late
because of its ability to adjust it body temperature[11].
	
At DynamicTech, the CTO began noticing things were going awry after a long period
time much like the frog and by the time he realized change was needed, the situation
was already festering and change was going to be painful. He needed to develop
awareness about the process and its shortcomings. Scrum standup meetings are good at
helping the team develop awareness because they encourage constant communication.

Conversely, static communication tools like the product backlog fail to convey this
constant stream of communication and lead to unwieldy backlogs that become
unmanageable as was the case was with DynamicTech.

Disposable Software
	
The premise of disposable software is to encourage the concept of reacting to change by
not attaching a lot of value to work that has already been done regardless of the effort
that has been put in. Some of the things that make it hard to have disposable software
are the notions of “maintainability, extensibility or reusability”[10]. These are not wrong
per se but depending on the emphasis placed on them can reduce the antifragility of the
software.

Effort should instead be invested in making software “replaceable” because we simply
cannot predict the future. This surprisingly improves the properties we like in software
like loose coupling and encapsulation[12].

Why teams get it wrong
	
The CTO of DynamicTech discovered Agile and was excited about the potential it has to
change the way they conduct Software development. He immediately began to research
“agile practices” and discovered Scrum was one of the most popular and adopted
practices. He immediately started studying Scrum and he began implementing some of
its processes in the team. He fell into a trap teams fall into when they are beginning
agile. He focused on practices not principles.

The problem is focusing on practices and losing sight of the underlying principles. Also,
beginners of Agile can’t really apply principles because they don’t have enough
experience to objectively think about what they are applying[10].

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

8

The major problems of trying to apply “agile practices” can be summarized as

• Misunderstandings and misapplication of practices.
• Lack of enough support for beginners
• No support for growing the team’s skills or continuous learning
• Little support for other members of the team like managers, testers etc.
• Agile methods are not really agile because they don’t change or encourage

change[10].

The agile manifesto states that “At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior accordingly”[1]. Yet ironically, very
few teams do this and agile practices like scrum purport to do sprint retrospectives but
offer little room for change in the process.

You are not really agile if you follow practices “by the book” and you do the “the same
thing the same way without changing”[10].

So where do these agile practices get it wrong. Let’s expand on some of the principles of
the Agile manifesto

Agile Principle What it says
Individual and interactions over
processes, tools, “tradition” and “canon”

Ideally something that is changing should
not have a rule book

Working software over comprehensive
documentation

These also includes plans, charts,
estimates, wikis etc.

Customer collaboration over detailed
contracts

These includes Lawyers, ignoring users
etc.

Responding to change over following a
plan

“Clinging to pre-conceived notions”,
repeating the past, ignoring change

Table 1 : Taking Agile a step further[10].

Practices

We want to convey principals through practices but practices boil down to following a
set of rules. The reality is some rules shouldn’t be broken like placing your code under
version control but in other instances we have to know when to go beyond the rules and
examine when a practice is good and when it is going to be dangerous. Specifically, what
context will the practice be good.

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

9

We can safely say that one practice does not fit all situations because of the following
reasons.

• We have a variety of project types.
• Programmers of different skills
• Managers who don’t know anything about programming
• People who don’t know how to work with each other.

The practice is therefore going to be different depending on the skill level[10].

A modern practice should

• “Be empirical” and it should be able to be tested and adjusted accordingly
• “Offer different approaches based on participant’s skill level” i.e. different teams

have differing skillsets. A common theme in agile practices is to tell people just
reflect and fix it (sprint retrospectives). Again beginners just don’t have the
experience to be able to “self-reflect”.

• “Sensitive to human needs and cognitive limitations”
• “Be inclusive and integral” i.e. every stakeholder should be able to be

involved[10].

Stop Practicing and Start Growing
	
Grows Method
	
Andy Hunt came up with a methodology which they believe can tackle most of the issues
we have highlighted in this paper. He calls it the Grows method[13]. In fact, most of this
paper is really based on his work in identifying and assessing the weaknesses of Agile
methods like scrum.

Grows method is based on four pillars

• Skill model
• Empirical, Experimental approach
• Inclusive i.e.it involves everyone not just the development team
• Self- determined i.e. the team decides what to do and how much to do

Skill model
	
The skill model is inspired by the dreyfus model of skill acquisition[14] where they
concluded that there are differences in how people perceive the world, solve problems,
acquire new skills and how they perform based on their skill level.

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

10

The skill stages are loosely defined as shown below

Skill Level Characteristics
Stage 1: Novice Little or no previous experience. Not

interested in learning and just want to
accomplish a specific goal. Don’t know
how to respond to mistakes well i.e. they
need context free rules to follow.

Stage 2 : Advanced Beginner Don’t want the big picture because it is
confusing to them. Need small, frequent
rewards

Stage 3 : Competent Develop Conceptual models,
Troubleshoot problems on their own,
Seek out expert user advise.

Stage 4 : Proficient Want to understand the larger conceptual
framework. Are frustrated by simplified
information, will self- correct previous
poor task performance, Learn from the
experience of others.

Stage 5: Expert Primary sources of knowledge and
information. Continually, look for better
methods, Work from intuition not
reason/rules. Rules actually degrade
performance to the level of a novice.

Table 2: Dreyfus skills model[10].

So how do all these people work together because

• Manager is likely a novice at software development
• Developer is likely a novice at the domain or business
• Everyone is likely a novice at process [10]

This skill model is not specific to a person, it is specific to a skill. You can be an expert in
one skill and a novice in another.

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

11

Mapping Practices to skills

Skill Level Practice
Stage 1: Novice Should focus on safety, Context-free

rules, checklists, version control,
Continuous integration etc. Concrete
feedback loops

Stage 2: Advanced Beginner Iterations, team synchronization,
Kanban, standup meetings, checklists

Stage 3 : Competent Modern technical practices, Scrum
Stage 4: Proficient Invent new approaches beyond current

practice, Move toward intuition/expertise
Stage 5: Expert Intuition and expertise ,not rules.

Teach new solutions. Keep a beginner’s
mind.

Table 3: Skill Practice mapping[10]

Directed Empiricism
	
Here we want to make decisions with actual outcomes and backed by evidence. We
avoid estimates, theories and charts.

We use feedback loops for everything.

The feedback loops are

• Setup before any activity is started
• Short i.e. they must be near real-time
• Real world i.e testing systems in production
• Iterative and incremental
• Anti-Fragile(improve them when they break)[10]

When we are presenting this framework to DynamicTech, we shouldn’t force people to
change or adopt this. We should instead encourage them to experiment and adapt where
they see fit and emphasize the fact that it is just an experiment.

The feedback itself must be

• Concrete and measurable
• Must be short – Real time wherever possible.

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

12

Experiments in GROWS method are

• Cheap to run
• Very short term with a time-boxed deadline
• Generate Specific, measurable outcomes of value
• Conditions of test and outcomes must be agreed by the team or stakeholders
• No experiment fails and experiments only generate data to inform the next

experiment[10].

Conclusi0n
	
In this paper we have identified some of the shortcomings of Scrum and how
DynamicTech started facing these obstacles . We then presented a framework of ideas
that can help guide decision making for the next steps when you are stuck with scrum or
any other agile practice.

Note that we don’t insist that DynamicTech should throw Scrum out but use this guiding
framework to direct the CTO’s next direction. Wholesale changes may be
counterproductive and we believe adopting this thought process can rapidly improve the
Software development process and make it anti-fragile.

In a nutshell we can summarize this framework as growing software through a form of
iterative or incremental model, growing the skills of the team members and making sure
the software development practices are “self-determined not imposed”[10].

 Beyond Agile: How Software Development can evolve to be Anti-Fragile

17653 Managing Software Development
	

13

References
	
[1] K. Beck et al., “Manifesto for Agile Software Development,” The Agile Alliance,

2001. [Online]. Available: http://agilemanifesto.org/.
[2] K. Schwaber and M. Beedle, Agile Software Development with Scrum, vol. 18.

2001.
[3] N. Nikitina, M. Kajko-Mattsson, and M. Stråle, “From scrum to scrumban: A case

study of a process transition,” in 2012 International Conference on Software and
System Process, ICSSP 2012 - Proceedings, 2012, pp. 140–149.

[4] H. Kniberg, Kanban and Scrum - Making the most of both. 2009.
[5] M. Cohn, “Agile estimating and planning,” in VTT Symposium (Valtion

Teknillinen Tutkimuskeskus), 2006, no. 241, pp. 37–39.
[6] J. Fisher, D. Koning, and A. P. Ludwigsen, “Utilizing Atlassian Jira For Large-

Scale Software Development Management,” Proc. 14th Int. Conf. Accel. Large
Exp. Phys. Control Syst., pp. 1–7, 2013.

[7] S. Berczuk, “Back to basics: The role of agile principles in success with an
distributed scrum team,” in Proceedings - AGILE 2007, 2007, pp. 382–387.

[8] Andy Hunt, “The Failure of Agility,” 2015. [Online]. Available:
http://growsmethod.com/articles/the_failure_of_agile.html. [Accessed: 17-Nov-
2017].

[9] N. N. Taleb, Antifragile: Things that gain from disorder. Random House, 2012.
[10] A. Hunt, “Anti-fragile and feedback. Trying to make up for the failures of ‘agile.’ -

Andy Hunt on Vimeo,” 2015. [Online]. Available: https://vimeo.com/131410262.
[Accessed: 13-Dec-2017].

[11] A. Hunt and D. Thomas, The Pragmatic Programmer. 1999.
[12] M. Keen et al., “Patterns: Implementing an SOA using an enterprise service bus,”

2004.
[13] A. Hunt, “Stop Practicing and Start Growing,” 2016. [Online]. Available:

http://growsmethod.com/articles/stop_practicing_and_start_growing.html.
[Accessed: 13-Dec-2017].

[14] S. E. Dreyfuss and H. L. Dreyfus, “A five-stage model of the mental activities
involved in directed skill acquisition,” Oper. Res. Cent., no. February, pp. 1–18,
1980.

